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Abstract-The stability of a two-phase flow in a heated inclined channel is studied. The temperature of 
the bottom plate is below the vaporization temperature and the top plate above the vaporization tempera- 
ture. A water film is on the cold wall and a vapor film on the hot wall. Gravity is the driving force. A basic 
flow with steady distribution of temperature but no phase change is found. The linear stability of this basic 
state is studied in the frame of incompressible fluid dynamics, without convection, but allowing for phase 
change at the interface. An ambiguity in the choice of the conditions to be required of the temperature at 
the phase change boundary is discussed. Three different instabilities are found, one due to the Reynolds 
stress when Reynolds number is large, one due to interfacial friction is associated with the viscosity 

difference of the two phases, and another due to phase changes at the interface. 

1. INTRODUCTION 

THE PROBLEM we are considering is related to the 
problem of stability of laminar film condensation 
(Nusselt’s solution) on an inclined cool plate (see 
Unsal and Thomas [ 1,2] for a fairly thorough review 
of this literature) and the problem of a falling film of 
liquid down an inclined plate which was decisively 
analyzed by Yih [3]. Yih’s problem was generalized 
to two-phase Poiseuille flow between parallel plates 
(Blennerhassett [4], Renardy [S]). 

It is necessary that we explain how our problem 
which is being considered here differs from those men- 
tioned in the foregoing paragraph and allied studies. 
Problems of the Yih, Renardy type have fully de- 
veloped basic flows but no phase change. In the 
present study we allow phase changes but cannot 
accommodate applied pressure gradients; Poiseuille 
flow cannot be treated rigorously in our frame. Our 
problem differs from the ones on laminar film con- 
densation because the second wall and the vapor are 
active and the basic flow is fully developed and not of 
boundary layer type. The second wall allows the 
system to attain a steady fully developed temperature 
profile in the basic state which cannot exist in a 
semi-infinite region. The fully-developed basic flow 
which we study is particularly convenient for a com- 
putational study of stability since approximations are 
not required, and the flow could conceivably be 
attained in experiments. We are not in the frame of 
laminar film condensation because phase changes do 
not occur in the basic flow. 

We could not obtain a steady fully developed flow 
for core-annular flow because there is a pressure jump 
across the cylindrical interface due to interfacial 
tension which interdicts the existence of a common 
saturation temperature there. For a similar reason, 

there are no developed steady flows with phase change 
which are driven by pressure gradients. On the other 
hand, developed steady flows in free fall between 
heated inclined plates can be considered if the change 
of density with temperature is neglected. This neglect- 
ing is usually done in the film condensation problems, 
and we follow this path, assuming in all that follows 
that the densities of the water and vapor are fixed 
constants independent of pressure and temperature. 

2. GOVERNING EQUATIONS 

We are going to assume that the density of the 
vapor and the density of the water are constants 
independent of variation of temperature or pressure 
across the channel. This means that the pressure will 
be a dynamical variable uncoupled from thermo- 
dynamics and that convective currents set up by 
the working of gravity on thermally induced vari- 
ations of temperature will be ignored. It is conceivable 
that thermally induced buoyancy could produce some 
important effects, but Spindler [6] did allow for these 
effects and they were not important. 

The velocities of both phases satisfy the incom- 
pressible Navier-Stokes equations : 

v-u=0 (1) 

du 
pdr = -VP-pg+pV’u. 

In the energy equation we shall neglect the dissipation 
term : 

pC,$= kV’l-. 

At the interface 1(x, I) = y- (R-&x, t)) = 0 we have 
mass, momentum and energy balances : 
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energy supply due to the surface tension 
interfacial friction due to the viscosity 
difference 
mechanical energy production rate 
from the interface 
thermal energy supply from the 
interface 
heat capacity 
eigenvalue 
rate of strain 
viscous dissipation in the energy of 
disturbances 
thermal dissipation rate 
rate of change of mechanical energy of 
disturbances 
rate of change of thermal energy of 
disturbances 
gravity contribution to the energy of 
disturbances 
gravity number, cos wgH,/ Vi 
gravitational acceleration 
half of the mean curvature of the 
interface 
length scale 
perturbation of the interface position 
latent heat, I/z] 
interface position 
mechanical energy production 
conversion from the basic flow 
thermal energy production conversion 
from the basic flow 
thermal conductivity 
viscosity ratio, p2/p, 
mass flux through the interface 
normal of the interface 
pressure of the basic flow 
Peclet number, R Pr 
phase change contribution to the energy 
of disturbances 
Prandtl number, pc/k 
pressure perturbation 
Reynolds number, p V,H,,/p 
width of the channel 

r 

T 
T+ 
T- 
t 
t 
u 
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11, v 

VO 
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dimensionless width of the channel, 
R/Ho 
temperature 
temperature on the hot wall 
temperature on the cold wall 
tangent to the interface 
time 
velocity component along x-direction 
of the basic flow 
velocity 
interface velocity 
velocity components 
velocity scale 
Weber number, a/p, H, Vi 
coordinates. 

Greek symbols 

; 
dimensionless wave number 
vapor volume fraction 

l- phase change number, k ,( T, - T-)&p, 
6(x, t) thickness of the vapor layer 
60 thickness of the vapor layer in the basic 

flow 
c density ratio, p2/p, 
0 temperature perturbation 
P dynamic viscosity 
5 thermal conductivity ratio, k,/k, 
n dimensionless slop of Clapeyron curve, 

PiT,Vi/(hg(T,- T-)1(1/~ I - ~/PA 
P density 
a surface tension coefficient 
TI hot wall temperature ratio, T+/T, 
‘F2 cold wall temperature ratio, T-/T, 
w angle of inclination of the channel to 

the horizontal. 

Indices 
1 vapor 
2 water 
S saturation 
* complex conjugate 

critical value. 

mass : with kinematic conditions : 

-WV0 = pl(ul -d-h2 = P2(U2-UZ)-n,2 (4) (7) 
momentum : 

where n, 2 is the normal of the interface directed from 
~~~D--nn,2+2[~D[ul.n,~4 = V~7+2Hm,, (5) vapor to water, T[u] is the stress tensor and Vz is called 

the surface gradient. In what follows we shall take o 
energy : as constant ; then, after subtracting the projection of 

-[kVTj*n,,+u,*(V,a+ZHan,,)- $ 

-[u*T[u]*n,,]l = riz[e+:lu121 (6) 

(5) with ux, (6) becomes 

-[kVT]*n,, = 2[A~-~~)~Dbl~n~2] 
+ri@+:lu-u:12]. (8) 
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The saturation temperature at equilibrium is deter- 
mined as given by the Clapeyron equation as a func- 
tion of pressure 

T = r, = F(p). (9) 

Obviously, if the pressure is different on the two sides 
of the interface, T,, = F(p,,) # &I,,) = TEz, the tem- 
perature cannot be the same in the water and water 
vapor. There will be a temperature discontinuity 

T, = TC&)), T2 = &I,). (10) 

This shows that thermodynamic equilibrium means 
that the water and its vapor are not in thermal equi- 
librium. The existence of a temperature discontinuity 
evidently cannot be eliminated by rigorous appli- 
cation of first principles. Schrage [7l says “. . . There is 
no reason why the temperature of the gas phase should 
necessarily be the same as that of the liquid or solid 
surface in all cases.” Indeed, classic kinetic theory 
calculations (Pao [8], Sone and Onishi [9], Aoki and 
Cercignani [IO], Onishi [ 111 and Cercignani et al. [ 121) 
indicate that for monatomic vapor large temperature 
jumps exist at interfaces. Shankar and Deshpande [13] 
have measured the temperature distribution in the 
vapor between an evaporating liquid surface and 
a cooler condensing surface in water, Freon 113 
and mercury. The temperature profiles obtained in 
mercury showed large jumps at the interface as large 
as almost 50% of the applied temperature difference. 

The usual approximation made in the study of 
phase changes of liquid and vapor is to require ther- 
mal equilibrium 

[T]=T,-T,=O (11)l 

together with thermodynamic equilibrium in the 
vapor 

T, = &J. Ul)* 

(See Plesset and Zwick [14], Gebhardt [15] and Ishii 
[16].) In general, pw # p., so that the water is not in 
thermodynamic equilibrium. The choice of tem- 
perature conditions at the phase change boundary 
appears to be an unresolved question of physics. Two 
of the possibilities are expressed as (10) and (11). 
There are other possibilities. 

The values of the parameters, which shall be taken 
as constants in the analysis to follow, are their table 
values at T = T, = 100°C : 

p, =0.585gme3; 
p,=O.965g cmm3; 
p, = 0.0125 cP, 
p2 = 0.28 cP; 
k, = 2.5 x 10e4 J cm-’ s-’ “C-l; 
k, = 6.8 x 10m3 J cm- ’ s- ’ “C- ‘; 

C,,, = 1.96 J g-’ OC-‘; 
C,,, = 4.18 J g-’ Y-‘; 
h, = 2.257 x IO3 J g- ‘; 

CT = 64.4 dyne cm- ‘. (12) 

3. GOVERNING EQUATIONS FOR THE 

INCLINED CHANNEL 

We now write the governing equations for flow 
down an inclined channel (Fig. I), restricting the 
analysis to two space dimensions. 

The interface is represented by 

Then 

Z(x,y,t) =y-(R-6(x,t)) = 0. (13) 

(14) 

(15) 

The equations of motion and energy are resolved in 
the usual way after noting that 

g = g(sin we, -cos me,.). (16) 

Then 

du a4 
pz = pg sin w- z +pV2u 

dv 
p&= -$wv 

(17) 

(18) 

where 

~=p+pgycosw (19) 

and (3) governs T. These equations hold both in the 
water and vapor phase with appropriate values for 
the constants. 

The interface conditions (4~(11) may be expressed 
in coordinate form using (19) and 

The continuity of the tangential component of vel- 
ocity (7)2 implies that on y = R-6 

[-vs,+u]l = 0. (21) 

The normal and tangential component of (5) can be 
written, using (19), as 

FIG. 1. Schematic of free falling flow of water (2) and vapor 
(1) along an inclined channel of width R. The interface is at 

y  = R-&x, I). 
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as, 
= (1 +d,)W (22) gsinwR[SZ(p,~2-2p,~,+P2~,) 

c, = +vP,(P, --P2)+P,P2l 
and 2Pi(P,+P(P,-PI)) 

=gsinwR[P2(2p2~2-P2~(1-PI~2)-P2~~I 
aJClr(F! +P(P2-P,)) 

(23) c3 = 

Then, since the tangential component of velocity is gsinwR2[p2B(~2-~,)--P2(2p2~,-p2~, -P~PJI 
continuous across y = R - 6 2/.&l +P(Pz-P,)) 

(U-IQ = [(u-ud*n121n12 = [(u-ud~n211n21 

and The temperature is given by 
(u-ur).n2, = (u+6,~+6,)/(1 +6,‘)“‘. (24) 

It follows that R-Y 
T,Cv)= T+-V+-WJ- 

0 
ti = p(u+&u+6,)/(1 +C)“2 (25) 

and the energy balance (8) reduces to 

2 
+ (1+8.:)3’2 L 

,,.+s.~u+s,){~+s.~(~+~) 

+a.$ ax (26) 

We have already mentioned that we do not know what 
temperature conditions to apply at the phase change 
boundary. We could demand that the temperature be 
at the saturation values in the water and water vapor. 
If the pressure is not continuous, then the temperature 
will not be continuous. We could also require that 
either water or its vapor be at saturation and enforce 
the continuity of temperature. Then the second phase 
will not be at saturation. 

At y = R-6,, T, = T2 = rY, and the pressure 

P, = -p,gycosw+A, Vye(R-&,,R) 

P,= -pgycos~+A~ Vye(O, R-6,) (32) 

with A,, A2 selected so that 

[[PI = -[pb(R-6,) cos w+[A]I = 0 (33) 

i.e. the pressure at the vapor-water interface is continu- 
ous, and the basic flow is in thermodynamic equilibrium 
with 

T, = T(P(R-6,)), ti = 0. (34) 

4. BASIC FLOW 

There is a steady, developed, solenoidal solution 

(u. 0, T, 6) = (UW, 0, T, &I) (27) 

in the form 

5. LINEARIZED EQUATIONS 

Let u, v, p, 0, h be perturbations of U, 0, P, T, R-6,. 
The linearized equations for the perturbations are 

u, + VJ = 0 (35) 

u,+ uu,+VU = - ;p.r+“v2u (36) 

U,o,) = - p’~~no(R-y)2+C,(R-y) 
I 

VYE(R-&,,R) 

~2b9 = - y(R--y)‘+C,(R-y)+C, 
2 

VYE(O,R-&,) I 

(28) 

(30) 

\c’y~(R-&,, RI I. 
TAA = r,-(T-T-1 

R-y--& 
R-6 VYE(O,R--O) 

0 J 

(31) 

1 
;,+uv, = - -p,,+vV% 

P 
(37) 

pc,(e,+ u4,+c) = kv’e. (38) 

The terms u, u and 0 vanish on y = 0 and R. The 
interface conditions are evaluated on y = R - 6, 

ni = p,@, -uA-4) = p&z-U,hx-h,) (39) 

[u+ U,,h]l = 0 w 

-[p]+[pjgh cos w+2[/.qj = -ah, (41) 
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[/l(lly + qy + lJV~h,] = 0 (42) 

[kO,.j -rizh, = 0. (43) 

We have to choose a temperature condition at the 
phase change boundary. We require saturation in vapor 
or side 1 

0, = p(p,)p, + [ - 7-i + p(p,)P;]h. 

Then either 

w 

or 

Ox = p(ps)p2 +[ - T; + ~(p,)p;]h (45) 

[cl]+ g h=O. [I (46) 

We do not know which of the two choices (45) or (46) 
better represents conditions to be described at a phase 
change boundary. 

6. PERTURBATION EQUATIONS AND 
NORMAL MODES 

To make our equations dimensionless we use the 
following scales : 

length : H,~r&& 

ve,ocity: v  = (f2+lj(fI-f2N9sinwg H 
0 

2(P,++B(P(z-PO) ” ” 

HO 
time: v  

0 

pressure : pi Vi 

temperature : T, - T- 

where V,, is just the velocity at the interface. We shall 
use the same letters for dimensional and dimensionless 
variables. If  we specify the fluids as water and its vapor 
then all their materials parameters are determined. We 
are left with four independent parameters R,, r, 7?, w 

and [ = 1.65 x IO’, m = 22.4, 5 = 21.2. 
The basic flow in dimensionless form is given by 

U,(y) = a,(r-y)Z+h,(r-y) 

U2C-v) = az(r--?,)‘+bz(r--y)+~2 

where 

(1 +Ptm- 1)X1 -PI i 
a, = - 

(i+p(l -i))fi ’ u2 = rn”’ 

b, = (P’(i+m-2)+2Pu -O+i) 
B(i+P(l-0) 

& = uwb7-i-m)+i) 
iwr+P(l-o) 

(47) 

(48) 

(49) 

(‘z = ib- I)-p(2j177-i-m) 
Nl -B)(i+/Y(l-0) 

The terms ~1, 11, p, 0, h are perturbations of the basic 
flow. In terms of normal modes 

v(s,y. f) = (u(y), ir(j,)) exp (ia(.x-cr)); 

p(s,y, I) = p(y) exp (ia(s-ct)); 

O(s,y. f) = O(y) exp (ia(.u-cf)) ; 

/I(.~, I) = h exp (ia(s - cf)) ; 

we get equations for rrQ), Q), p(r), O(J) and h : 

crrr+r = 0; (51) 

dU i 
a(U-c)u+L~- = -ap+ ~(a’u-LO’); 

d.r (52) 

a(U-C)L’ =p,+ ; (a%--1’))); (53) 

together with boundary conditions : 

u,(r) = o,(r) = O,(r) = 0: (55) 

Ul(O) = VJO) = O?(O) = 0. (56) 

After P(J) and h have been eliminated, the jump con- 
ditions at the unperturbed interface J’ = I can be 
expressed as 

a[u](U, -iul)++u, -f&) g = crc(l -i)[u] [ 1 (57) 

dU 
+amrr, - = 0 (58) [ 1 d.v 
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iI dcJ 
+F:O; G = --CL(U, -u2)c. (60) [ 1 

The condition (44) that the temperature on the vapor 
side of the interface is at saturation can be written as 

O,-(r;+“,c)& =dI,R,u,c. (61) 

Similarly for water side 

CJ2-(T;+lT2+jq = al-12R2u2c. (62) 

The continuity of temperature requires that 

r$][o]- ~$1 = 0. (63) 

Equations (61)-(63) cannot be enforced simul- 
taneously. A choice must be made. 

7. TWO DIFFERENT INTERFACIAL 

TEMPERATURE CONDITIONS 

When (61) and (62) are adopted, the thermo- 
dynamic equilibrium is required at the interface, 
consequently the temperature continuity is not 
guaranteed. This closes the mathematical formation 
of the eigenvalue problem. We shall designate this 
problem as case I. Alternatively we can satisfy thermal 
equilibrium, namely (63) and require that one of the 
phases, say, the vapor phase be at saturation tem- 
perature. We designate this problem as case II. 

These two different systems of equations differ only 
on one equation, although generally it should be 
expected that they will give different results, for the 
water-vapor cases, the differences are insignificant 
(Table I). Hence, only the results of case II will be 
reported. 

8. ENERGY ANALYSIS 

The temperature or thermal energy equation is 
coupled to mechanical energy through the mechanism 
of phase change. In this case we may get two energy 
identities, one for mechanical energy designated with 
a subscript M and another for thermal energy des- 
ignated with subscript T. The mechanical energy equa- 
tion is obtained as follows. Suppose (u,u,O) are the 
components of an eigenvector associated with the 
maximum growth rate of one of the problems satisfy- 
ing the equations (5l)-(61) and one of the equations 
of (62) or (63). To get the equation governing the 
evolution of the mechanical energy of the disturbance, 
we multiply (52) and (53) with u* and LJ*, the complex 
conjugates of u and ~1 respectively, then integrate the 
sum of them over both the liquid and vapor regions 

-KP*I (64) 

where ( ) = s, +j?, u* = uu*, a* = au* and we used 
the boundary and interracial conditions to evaluate 
the integrals. Equation (64) is the energy balance for 
the small disturbance, and every term in it can be 
interpreted as some kind of energy. The imaginary 
part of the left hand side represents the growth of the 
energy of the disturbance and the right hand side may 
be split into three parts 

,I?, = I,-DD,+BM 

where 

B, = ac,((u2+u’)) 

(65) 

4,, = $(ai(u’+u’)+ ($+ ($>‘) 

B, = -1m u’zf* + u’v*) - [i&*1 . 1 I 
We may transform the last term of BM as follows : 

Table I A comparison of the results from different choices of interfacial temperature 
conditions for typical parameters in the vertical case (o = 90”) 

Parameters 
Eigenvalue with the maximum growth rate 
Case I Case II 

R*= IO ci = 0.0130 d = 0.0131 
r= 1.5 Cc = 1.040555,0.1521851 ck = 1.040536, 0.152197i 
52 = 0.97 

0x2 = 1000 ii = 0.250 d = 0.249 
r = 2.0 dc = 0.266496, 0.0072672i Cc = 0.265408,0.0072667i 
r2 = 0.97 
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Kh*1 = KPIG + b*lP I (66) 

where [@I can be evaluated from the jump condition 
as 

Then B, can be further decomposed into four parts 

BM = B, +Ph+B,+G (67) 

where 

m: B, =a2WIm - 

(r-3 

dV 

dy 

Ph = Im ([v*Jp,) 

which arises from the change of phase : 

B, = -Im 

and 

is the gravity term. 
To get the equation governing the production of 

thermal energy we multiply equation (54) by 8*, and 
integrate over both vapor and water regions 

(a(V-c)e2) = (&202+(g) - (ue*g) 

+ j+3* . (68) [ 1 
Equation (68) can be written as follows : 

rf, = I,-D,+B, 

where 

i+ = ac,(e2) 

(69) 

D, = (k(E202+ g])) 

9. HORIZONTAL CASE 

The horizontal case deserves special treatment 
because in this case gravity does not drive the flow. 

The basic state is motionless with a linear temperature 
profile and zero velocity. Since there is no prescribed 
velocity a different unit of velocity scale, p,[/p ,H,m 
is used to make the equations dimensionless. The 
governing equations then become 

d4)-2a2u”+ct4v = iacR(a2u-v”) (70) 

8”-a28--iPeaT’ = iucPe0. (71) 

The general solution of this system can be expressed 
as 

u(y) = A e”J’+Be-“J’+C&+D e-q (72) 

ety) = Ee*+Fe-*+0(y) (73) 

where 

oi2 = a2-ia&, f’ = a2-iiac Pe and 

8(y) = 5 
‘[ 

A em? 

+Bemay+ &(Ce’Y+De-“‘.) . 1 
Substituting (72) and (73) into the boundary and 

interface conditions, we are led to an eigenvalue prob- 
lem for a 13 x 13 matrix acting on a vector whose 13 
components are the coefficients A, B, C, D, E, F for 
both vapor and water phase and the interface position 
variable h. This system cannot be solved analytically. 
However for each set of parameters, we can find the 
eigenvalues numerically. There are three independent 
parameters Ho, r and r2. Figure 2 displays the neutral 
curve when Ho and r are fixed, t2 varies. It shows that 
when 1 -TV = (Ts- T-)/T, increases at a fixed value 
of CI the basic state becomes unstable. The case in 
which T ,  and H,, are fixed and r changes is represented 
in Fig. 3 which shows that the basic state is more 
stable when the vapor layer is thicker. 

The energy analysis (Table 2) shows that the phase 
change term is the dominant destabilizing term in 
the energy balance, surface tension and gravity are 

0.12 

l-2, 
0.1 

0.06 

0.06 

0.04 

0.02 

0 ' 
I I I I 1 I 

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 
wavenumber cx 

FIG. 2. Neutral curve when Ho = 0.001 m, r = 1.3, G’ = 
0.00434, W = 48.4, r, ll, and TIr change with (1 -TJ, in the 

horizontal case. 
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Table 2. Energy analysis : H, = 0.001 m ; c’ = 0.00434 ; W = 48.4 ; and r , = I .2 (in the horizontal case) 

I-T1 07 a‘c, EM B, Ph 4 G G 4 Ii--& 

0.017 3.6e-4 1.6e-6 I .2e-3 -4.6e-9 1.00 2.0e-5 - 5.5e-7 7.le-6 1.0 -9.99e-1 
0.070 5.2e-3 4.0e-3 3.8e-I - 1 .Oe-8 I .38 3.5e-6 - 5.6e-4 I .Oe-3 1.0 -9.99e-1 

1 
I 

10‘ 5 10-4 0.001 0.01 
wavenumber a 

FIG. 3. Neutral curve when r2 (i.e. the temper_ature of the 
lower plane) is fixed (0.95): Ho = 0.001 m; G = 0.00434; 
W= 48.4; r = 0.231e-‘; ll, = 0.2eC’; II? = 0.0338, in the 

horizontal case. 

stabilizing but of small magnitude. The instability is 
solely caused by the change of phase. 

10. VERTICAL CASE 

In the general case an analytic form for the eigen- 
function cannot be found and the finite element code 
of Hu and Joseph [ 171 was used to solve the eigenvalue 
problem. Figure 4 displays neutral curves in the ver- 
tical case when r = 2.0, 22 = 0.97. 

The neutral curve consists of two branches, each of 
which represents a different mechanism of instability. 

wavenumber a 

FIG. 4. Neutral curve when r = 2.0, rZ = 0.97, in the vertical 
case. 

The energy analysis of this case (Table 3, where the 
viscous dissipation term D, is used to normalize (65) 
and D, is used to normalize (69)) shows that in region 
I the instability is caused by the interfacial friction B, 
together with the phase change term P when the Reyn- 
olds number is small. On the other hand the instability 
in region II arises from the Reynolds stress in the 
water layer. There is an overlapping region where two 
unstable modes exist, and a mode jump is observed at 
R, about 1130. 

When the vapor layer is thinner (Fig. 5, where 
r = 1.5, r2 = 0.97), another instability appears in the 
long wave range. Energy analysis (Table 4) shows 
that this instability arises from phase change. We can 
also see that the maximum growth rate decreases as 
the Reynolds number increases and at R, about 670, 
a mode jump occurs. The new mode of instability is 
associated with the Reynolds stress with phase change 
playing only a minor role. 

Figure 6 displays the neutral curves when Reynolds 
number and r are fixed (R, = 1000, r = 1.5) and 7* 

varies. Three different instabilities can be identified. 
For long waves there is an unstable mode associated 
with phase change, consistent with the results for 
the horizontal case, this mode goes unstable when 
1 -72 = (r,- T-)/i”, increases at a fixed CI. However 
in this case the mode with the maximum growth rate 
is associated with the Reynolds stress, which is always 
unstable (right most region of Fig. 6), while the 

100 ' I I \ I 

0.001 0.01 0.1 1 10 
wavenumber a 

FIG. 5. Neutral curve for vertical case o = 90”, r = 1.5, 
72 = 0.97. 

Table 3. Energy analysis for the mode of maximum growth rate in the vertical case : r = 2.0 ; 7? = 0.97 

86.7 0.198 1.40e-5 8.2e-4 -0.97 -2.le-3 0.546 0.427 5.7e-6 0.72 -0.720 
900 0.243 7.43e-3 1.2e-1 -0.98 - l.Oe-1 0.072 1.130 3.2e-2 0.57 -0.537 

1200 1.491 2.07e-2 2.16 3.26 -0.873 -0.002 -0.225 4.2e-2 0.71 -0.672 
2000 1.176 3.50e-2 2.96 3.29 -0.314 0.002 -0.012 1.4e-1 0.12 -0.583 
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Table 4. Energy analysis for the mode of maximum growth rate in the vertical case (Fig. 5) : r = I.5 ; rZ = 0.97 

R2 ‘d CC, & &.I-DM B, Ph B* ET BT IT--& 

100 0.0060 I .52e-2 6.9e-2 - 1 .ooo - 6.8e-8 I .07 3.5e-3 I .7e-3 0.964 -0.962 
300 0.0041 5.12e-3 6.9e-2 - 0.999 - 2.2e-8 I .06 7.9e-3 1.7e-3 0.964 -0.962 
650 0.003 1 2.28e-3 6.9e-2 -0.998 - 9.4e-9 1.05 I .4e-2 I .7e-3 0.964 -0.962 
700 I.041 5.67e-3 6.7e-I I .09 -3.le-I 0.11 -0.21 3.4e-3 I .24 - I .239 

2000 I .065 8.1 le-2 5.61 6.06 -4.8e-I 0.07 2.6e-2 0.121 I .40 - 1.280 

wavenumber a 

FIG. 6. Neutral curve when Reynolds number and rare fixed : 
lR2 = 1000; r = I .5, in the vertical case. 

unstable region resulted from the interfacial friction 
is split into two parts. 

Finally we briefly discuss the effect of the inclination 
angle w. Notice that in our dimensionless form w onIy 
appears in the gravity parameter, and from the energy 
analysis we see, as can be expected when the vapor 
lies above the water, that gravity is stabilizing, how- 
ever when phase change is the dominant destabilizing 
factor, the influence of the gravity is almost negligible. 
In the inclined cases, there is an unstable mode caused 
by the interfacial friction, in these cases the gravity 
term is larger but not large enough to stabilize the 
flow (Table 5). 

11. CONCLUSIONS 

The problem of stability of fully developed flow of 
liquid and its vapor under gravity between heated and 
cold parallel plates was considered. The water and its 
vapor were assumed to be incompressible, but vapor- 
ization and condensation at the water-vapor inter- 
face could occur. In the fully developed case there is no 
phase change at the flat interface but the perturbation 
induces phase changes under the condition that the 

Table 5. Critical points in the case when r = 2.0, rZ = 0.97 
with different inclination angles 

Critical Critical 
Reynolds wave number, Wavespeed, 

OJ number, a2 d Re@) 

90” 86.7 0.198 0.305 
30” 93.4 0.186 0.296 
IO” 106.1 0.169 0.272 

total volume of vapor and the total volume of liquid 
is conserved. Three kinds of instability can arise, 
an instability due to the Reynolds stress at higher 
Reynolds numbers, an instability due to interfacial 
friction which is associated with the viscosity differ- 
ence and will arise even in the absence of phase change 
and a strong phase change instability at the inter- 
face which can occur even between horizontal plates 
heated above with no basic motion. All these insta- 
bilities arise as overstability so that Hopf bifurcation 
into periodic solutions is expected. Analysis of bifur- 
cations, presently underway, should reveal whether 
periodic solutions are stable, can be observed, and 
decide when the waves propagate. 

The issue of temperature conditions at a phase 
change interface is an important one. The problem 
arises whenever a pressure jump across the interface 
is allowed even when the phases are solid or liquid. If  
the pressures on each side of the interface are different 
and the temperature is at saturation, then there must 
be a discontinuity of temperature. Different choices 
of thermal interface conditions are possible. Although 
in special cases treated here, water and its vapor, the 
stability results do not depend sensitively on the choice 
of conditions of the temperature at the interface we 
do not expect weak dependence in general especially 
when the dependence of the saturation temperature 
on the pressure is not small. The choice of temperature 
conditions at a phase change boundary goes beyond 
continuum thermomechanics and appears to require 
some form of molecular theory. 
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